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abstract
Protein tyrosine phosphatase 1B (PTP1B) appears to be an attractive target for the development of new drugs for 
type 2 diabetes and obesity. In our preliminary test, a MeOH extract of the stem barks of Sorbus commixta Hedl. 
(Rosaceae) showed strong PTP1B inhibitory activity. Bioassay−guided fractionation of the MeOH extract resulted 
in the isolation of two lupane−type triterpenes, lupenone (1) and lupeol (2). Compounds 1 and 2 inhibited PTP1B 
with IC50 values of 13.7 ± 2.1 and 5.6 ± 0.9 μM, respectively. Kinetic studies revealed that both the compounds 1 
and 2 are non−competitive inhibitors of PTP1B that decrease Vmax values with no effect on Km values.

Keywords: Protein tyrosine phosphatase 1B; Sorbus commixta Hedl.; Rosaceae; lupenone; lupeol; non−competitive 
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Introduction

Metabolic diseases such as type 2 diabetes and obesity are 
associated with insulin resistance [1–3]. Recent studies sug-
gest that protein tyrosine phosphatase 1B (PTP1B) plays a 
major role in the inhibition of insulin action [1–3]. At the 
cellular level, the insulin signaling is initiated by means of 
phosphorylation of insulin receptor (IR) and insulin recep-
tor substrates (IRS), which then activates several signaling 
cascades leading to biological responses such as glucose 
transport into the cells and glycogen synthesis [1–3]. In this 
process, PTP1B blocks the signaling pathway by dephospho-
rylating the activated IR as well as IRS proteins. Accordingly, 
the enzyme is emerging as a potential therapeutic target for 
the treatment of type 2 diabetes and obesity [1–4]. Although 
several types of synthetic PTP1B inhibitors have been 
developed and applied for clinical trials, due to the toxic-
ity, side effects, and low bioavailability, new types of PTP1B 
inhibitors still need to be discovered [1–4]. Because natural 
products are recognized as an attractive source for the devel-
opment of new PTP1B inhibitors, we have screened for hun-
dreds of plant extracts using in vitro enzyme assay [5]. In the 
continuing study, we found that a MeOH extract of the stem 
barks of Sorbus commixta Hedl. (common names: mountain 

ash, scarlet rowan) in the family Rosaceae inhibited PTP1B 
activity (65% inhibition at 30 g/mL). The stem bark of S. 
commixta has been used in traditional medicine as a tonic 
and to treat various respiratory diseases [6]. The fruits have 
also been used as a laxative, gargle for sore throats, inflamed 
tonsils, and hoarseness [6]. The biphenyls acuparin and its 
29- and 49-oxygenated derivatives have been reported as phy-
toalexins of the genus Sorbus [7]. Previous phytochemical 
investigations on this plant have resulted in the isolation of 
triterpenes, lignans and flavonoids [8]. In our previous work, 
the flavanol glycosides, catechin-7-O--D-xylopyranoside 
and catechin-7-O--D-apiofuranoside, isolated from 
this species, were found to have antioxidant activity [9]. 
Recently, its extract was demonstrated to have beneficial 
effects on atherosclerosis and protective effect on hepatic 
lipid peroxidation in acute-alcohol treated model [10,11]. 
However, there has been no study with regard to its inhibi-
tory effect on PTP1B. Using a bioassay-guided fractionation, 
we finally purified two lupane type triterpenoids identified 
as lupenone (1) and lupeol (2) as active principles. In this 
paper, we describe the isolation of two active constituents, 
and the kinetic analyses of the compounds on the enzyme.
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Materials and Methods

Plant material
The stem barks of S. commixta were collected in Mt. Sulak, 
Korea in June 1998, and identified by Professor. KiHwan 
Bae, College of Pharmacy, Chungnam National University. 
A voucher specimen (CNU 1081) has been deposited in the 
herbarium of the College of Pharmacy, Chungnam National 
University (Korea).

Extraction and isolation
The dried stem barks of S. commixta (500 g) were extracted 
with MeOH (3 L) by reflux. The MeOH extract (48 g) was sus-
pended in H

2
O (1 L) and partitioned with EtOAc (900 mL × 

3) and BuOH (900 mL × 3), sequentially. The EtOAc−soluble 
fraction showed PTP1B inhibitory activity (80% inhibition at 
30 g/mL). The EtOAc−soluble fraction (20 g) was chroma-
tographed over silica gel (7 × 40 cm; 70 − 230 mesh) using a 
gradient of hexane−acetone (from 10:1 to 0:1) to yield seven 
fractions (Fr. 1 − Fr. 7). Of these, Fr. 2 and Fr. 3 showed the 
most potent PTP1B inhibitory activity (79 and 87% inhibition 
at 10 g/mL). Fr. 2 (2.1 g) was chromatographed on silica gel 
(4.5 × 40 cm; 15 − 40 m) with mixtures of hexane−acetone 
(15:1), to afford lupenone (1, 105 mg). The active fraction, Fr. 
3 (3.2 g), was further separated by a silica gel column (4.5 × 
40 cm; 15 − 40 m), eluted with hexane−acetone (6:1), to 
give lupeol (2, 1100 mg).

Lupenone (1)
colorless needle (from CHCl

3
-MeOH); mp 169-170°C; []

D
 

+62.8° (c 1.0, CHCl
3
); IR 

max
 cm-1: 3080, 1700, 1648, 890; EIMS 

m/z: 424 [M]+, 409, 313, 218, 205, 189, 161; 1H-NMR (300 MHz, 
CDCl

3
) : 4.69 (1H, m, H-29), 4.57 (1H, m, H-29), 2.41 (1H, 

m, H-19), 1.68, 1.07, 1.07, 1.02, 0.96, 0.93, 0.80 (each 3H, s, 
7×CH

3
); 13C-NMR (75 MHz, CDCl

3
) : 39.6 (C-1), 34.1 (C-2), 

217.9 (C-3), 47.3 (C-4), 55.0 (C-5), 19.6 (C-6), 33.6 (C-7), 40.9 
(C-8), 49.8 (C-9), 36.9 (C-10), 21.5 (C-11), 25.2 (C-12), 38.2 
(C-13), 42.9 (C-14), 27.4 (C-15), 35.6 (C-16), 42.9 (C-17), 48.3 
(C-18), 47.9 (C-19), 150.7 (C-20), 29.9 (C-21), 40.0 (C-22), 
26.6 (C-23), 21.0 (C-24), 15.8 (C-25), 15.9 (C-26), 14.4 (C-27), 
18.0 (C-28), 109.2 (C-29), 19.3 (C-30).

Lupeol (2)
white amorphous powder; mp 210°C; []

D
 +26.0° (c 0.8, 

CHCl
3
); IR 

max
 cm-1: 3235, 1640, 1490, 1382, 1185, 1105, 

1040, 984, 943; EIMS m/z: 426 [M]+, 218, 207, 189; 1H-NMR 
(300 MHz, CDCl

3
) : 4.69 (1H, m, H-29), 4.57 (1H, m, 

H-29), 3.18 (1H, dd, H-3), 2.29 (1H, m, H-19), 1.91 (1H, 
m, H-21), 1.68, 1.03, 0.97, 0.94, 0.83, 0.79, 0.76 (each 3H, 
s, 7×CH

3
); 13C-NMR (75 MHz, CDCl

3
) : 38.6 (C-1), 27.3 

(C-2), 78.9 (C-3), 38.8 (C-4), 55.2 (C-5), 18.2 (C-6), 34.2 
(C-7), 40.7 (C-8), 50.3 (C-9), 37.1 (C-10), 20.9 (C-11), 25.0 
(C-12), 38.0 (C-13), 42.7 (C-14), 27.4 (C-15), 35.5 (C-16), 
42.9 (C-17), 48.2 (C-18), 47.9 (C-19), 150.8 (C-20), 29.8 
(C-21), 39.9 (C-22), 27.9 (C-23), 15.3 (C-24), 16.1 (C-25), 
15.9 (C-26), 14.5 (C-27), 17.9 (C-28), 109.3 (C-29), 19.2 
(C-30).

Assays for protein tyrosine phosphatases
PTP1B assay: PTP1B (human, recombinant) was purchased 
from BIOMOL® International LP (USA). The enzyme activ-
ity was measured using p−nitrophenyl phosphate (pNPP) 
as described previously [12]. To each 96 well (final volume: 
200 L) was added 2 mM pNPP and PTP1B (0.05 − 0.1 g) 
in a buffer containing 50 mM citrate (pH 6.0), 0.1 M NaCl, 
1 mM EDTA and 1 mM dithiothreitol (DTT) with or without 
test compounds. Following incubation at 37°C for 30 min, 
the reaction was terminated with 1 M NaOH. The amount of 
produced p−nitrophenol was estimated by measuring the 
absorbance at 405 nm. The nonenzymatic hydrolysis of 2 mM 
pNPP was corrected by measuring the increase in absorb-
ance at 405 nm obtained in the absence of PTP1B enzyme.

Dual-specificity protein tyrosine phosphatase  
(DS−PTP) assay
DS−PTP was assayed with the His tagged−VH1−related 
human protein (VHR) fusion enzyme. The full-length 
human VHR(residues 1-185) was expressed in Escherichia 
coli and the intact protein was purified [12]. The reaction 
mixture containing VHR enzyme, 2 mM pNPP and assay 
buffer (50 mM succinate, 1 mM EDTA, 140 mM NaCl, 0.05% 
Tween 20, pH 6.0) was incubated at 37°C for 30 min. The 
reaction was terminated by the addition of 1 M NaOH, and 
the dephosphorylation activity measured at 405 nm [13].

Protein serine/threonine phosphatase 1 (PP1) assay
The PP1 (Sigma Chemical Co., St. Louis, MO, USA) was 
measured at 37°C using pNPP as a substrate. Reactions were 
performed for 30 min in the assay buffer (50 mM Tris−HCl, 
0.1% -mercaptoethanol, 1 mM EDTA, 1 mM MnCl

2
, 20 mM 

MgCl
2
, pH 7.6). The reaction was stopped by the addition of 

1 M NaOH, and the amount of p−nitrophenol was measured 
by absorbance at 405 nm [12].

Inhibition kinetics
In the kinetic analysis, the reaction mixture consisting of six 
different concentrations of pNPP (0.5, 1.0, 2.0, 4.0, 8.0 and 
16.0 mM) used as a PTP1B substrate in the absence or pres-
ence of compounds 1 and 2 [12]. The Michaelis−Menten 
constant (K

m
) and maximum velocity (V

max
) of PTP1B were 

determined by Lineweaver−Burk plots using a GraphPad 
Prism® 4 program (GraphPad Software Inc., USA).

Results

Bioassay−guided fractionation on the EtOAc–soluble fraction 
led to the isolation of active compounds 1 and 2 (Figure 1).  
The structures of compounds were identified as lupenone (1)  
and lupeol (2) by physicochemical (mp, []

D
) and spectro-

scopic data measurement (MS, 1H−NMR, 13C−NMR) and by 
comparison with published values [8].

As shown in Table 1, lupenone (1) and lupeol (2) inhib-
ited PTP1B activity in a dose−dependent manner with IC

50
 

values of 13.7 ± 2.1 and 5.6 ± 0.9 M, respectively. The 
known inhibitors RK-682 (IC

50
 = 4.5 ± 0.5 M) and ursolic 
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acid (IC
50

 = 3.5 ± 0.2 M) were used as positive controls in 
this assay [13,14]. In addition, both the compounds were 
tested for the inhibitory effects on other types of protein 
phosphatases, and it was revealed that the compounds 1 and 
2 had no inhibitory effects toward dual−specificity protein 
tyrosine phosphatase (VHR) and protein serine/threonine 
phosphatase (PP1) at levels up to 100 M. This suggests that 
1 and 2 have specific inhibitory activity against PTP1B. To 
elucidate the inhibition mode of 1 and 2 on the activity of 
PTP1B, kinetic analyses were performed with different con-
centrations of substrate. As shown in Figure 2, the mecha-
nisms of inhibition by the two compounds were determined 
using a Lineweaver−Burk plot. When pNPP was used as sub-
strate, both the 1 and 2 decreased the V

max
 values, but did not 

alter the K
m

 values of PTP1B (Figure 2). Accordingly, both 
the 1 and 2 were determined as non−competitive inhibitors 
with K

i
 values of 11.8 and 3.4 M, respectively.

Discussion

PTP1B appears to be a promising therapeutic target because 
the level of PTP1B expression in muscles and adipose tissues 
is associated with the degree of insulin resistance in subjects 
with diabetes and obesity [1–4].

During the screening effort we found that a MeOH extract 
of the stem barks of S. commixta inhibited around 65% 
PTP1B activity at a level of 30 g/ml. After solvent fractiona-
tion, the activity was concentrated in EtOAc–soluble frac-
tion (80% inhibition at 30 g/ml). Further bioassay−guided 
fractionation of the EtOAc–soluble fraction resulted in the 
isolation of two lupane−type triterpenes, lupenone (1) and 
lupeol (2) as the active principles. Both the compounds 

isolated showed selective inhibitory activity against PTP1B. 
To examine whether 1 and 2 inhibit PTP1B by interacting 
with the enzyme’s active site, we tested the inhibition kinet-
ics of the compounds with pNPP as the substrate. From the 
kinetic studies, we found that both 1 and 2 inhibited PTP1B 
in a non−competitive manner, indicating that they may bind 
to the enzyme−substrate complex or interact with a specific 
binding site distinct from the active site of the enzyme [15]. 
Lupane−type triterpenes including lupenone and lupeol 
have been reported to possess a wide range of bioactivities 
that include anti-inflammatory, antiviral, antimicrobial, 
antioxidant, antitumor, antiangiogenic and antimalarial 
effects [16–21]. Recent studies suggest that various bioactivi-
ties of lupeol and lupenone are associated with the inhibi-
tion of key enzymes and/or transcription factors such as 
NF-B and PI3K/Akt [19,22,23]. Those findings indicate that 
lupeol and lupenone are capable of modulating signaling 
cascades in cells, which may be useful for developing a new 

R

Lupenone (1) R = =O
Lupeol (2) R = 3β-OH

Figure 1. Structures of lupenone (1) and lupeol (2).

Table 1. Comparison of the inhibitory activity of the compounds 1 and 2 
isolated from S. commixta against PTP1B, VHR and PP1.

Compounds

IC
50

 (M)a

PTP1B VHR DS−PTP PP1

1 13.7 ± 2.1 > 100 > 100

2   5.6 ± 0.9 > 100 > 100

RK-682b
  4.5 ± 0.5 NTc NTc

a IC
50

 values were determined by regression analyses and expressed as 
mean ± SD of three replicates. b Positive control. c Not tested.

-0.5 0.0 0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1/
v

-0.5 0.0 0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1/
v

1/[pNPP], mM−1

1/[pNPP], mM−1

a

b

Figure 2. Inhibition kinetics of lupenone (1) and lupeol (2). Panel a 
shows a Lineweaver−Burk plot of the inhibitory effect of compound 1 on 
PTP1B−catalyzed hydrolysis of pNPP. Data are expressed as mean initial 
velocity for n = 3 replicates at each substrate concentration. Symbols: (*) 
0 M, (□) 1 M, (▼) 5 M, (■) 10 M, (●) 20 M lupenone (1). Panel b 
shows a Lineweaver−Burk plot of the inhibitory effect of compound 2 on 
PTP1B. Data are expressed as mean initial velocity for n = 3 replicates at 
each substrate concentration. Symbols: (*) 0 M, (□) 1 M, (∆) 3 M, (▼) 
5 M, (■) 10 M lupeol (2).
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PTP1B inhibitor because PTP1B is an intracellular enzyme. 
Interestingly, some plants containing lupeol and lupeol itself 
were demonstrated to have hypoglycemic activity as well 
as -amylase inhibitory activity useful for treating diabetes 
[24,25]. These evidences strongly support that lupane−type 
triterpenoids can be a lead moiety for the development of 
new PTP1B inhibitors. Among hundreds of PTP1B inhibi-
tors developed so far, only a few types of molecules such as 
ursane and oleane type triterpenoids, and kaurane diterpe-
noids are known as non azole−type inhibitors of PTP1B with 
micromolar level IC

50
 values [12,26,27]. A lupane structure, 

as a non azole−type inhibitor, may provide us with better 
understanding of inhibition mechanism, and be useful in 
drug design.

In conclusion, bioassay−guided investigation of the 
MeOH extract of the stem barks of S. commixta afforded 
two lupane−type triterpenes, lupenone (1) and lupeol (2) 
as active constituents. The present study indicates that 
these compounds are selective and non−competitive 
inhibitors of PTP1B. To our knowledge, this is the first 
time that lupane−type triterpenes have been described 
as PTP1B inhibitors. Because PTP1B is an intracellular 
enzyme, further studies to confirm their cellular effects is 
in progress.

Declaration of interest: This work was supported partly 
by the Global Partnership Program (No. M60602000001-
06E0200-00100) of Korea Foundation for International 
Cooperation of Science & Technology (KICOS) and KRIBB 
Research Initiative Program. The authors alone are respon-
sible for the content and writing of the paper.
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